Finish Chapter 27: Electromagnetic Induction Chapter 28: Alternating-Current Circuits Tuesday November $1^{\text {st }}$

- Mini-exam 4 on Thursday
- Will cover Ch. 26 \& 27 (LONCAPA 13-16)
-Review of Inductors
-Review of RL Circuits
- Energy and oscillations in LC circuits
-Intro to alternating current theory
- Defn of terms, e.g., rms values
- Resistance
- Capacitive reactance
-Inductive reactance

Reading: up to page 498 in the text book (Ch. 28)

Review: Inductors

- We can, therefore, define a quantity L called inductance, which relates I to Φ_{B} and, thus, $d I / d t$ and ε :

$$
\Phi_{B}=L I
$$

$$
\varepsilon_{L}=-L \frac{d I}{d t}
$$

Units for L :
weber/amp
T. $\mathrm{m}^{2} / \mathrm{A}$

Henry (H)
Solenoid:

$$
B=\mu_{\mathrm{o}} n I
$$

$$
L=\mu_{0} n^{2} A l
$$

LR circuits (similarity to RC circuit)

LR circuits (similarity to RC circuit)

LR circuits (similarity to RC circuit)

Example

A 3.5 V battery is connected in series with a switch, a resistor and an inductor. The switch is thrown at time $t=0$. The current reaches half its maximum value after 1.2 ms . After a long time, the current reaches a maximum of 255 mA .
Deduce values for the resistance and inductance in the circuit.

Energy Stored in an Inductor

Close switch

Energy stored in magnetic fields:
Energy density: $\quad u_{B}=\frac{\text { Energy }}{\text { unit volume }}=\frac{B^{2}}{2 \mu_{\mathrm{o}}}$

Ch. 28: Electromagnetic oscillations

Ch. 28: Electromagnetic oscillations

Ch．28：Electromagnetic oscillations

$$
\begin{aligned}
& \frac{Q_{m}^{2}}{2 C}=\frac{1}{2} L I_{m}^{2} \\
& U\left(=U_{B}+U_{E}\right) \\
& \text { イбләиヨ } \\
& 0 \begin{array}{cc}
T / 2 & T \\
U=U_{B}+U_{E}=\frac{1}{2} L I^{2}+\frac{1}{2} \frac{Q^{2}}{C}
\end{array}
\end{aligned}
$$

Ch. 28: Alternating Current

$$
V(t)=V_{P} \sin \left(\omega t+\phi_{V}\right) ; \quad I(t)=I_{P} \sin \left(\omega t+\phi_{I}\right)
$$

Here

Sine curve starts at $\omega t=-\pi / 6$ or -30°

Voltage completes Angular frequency: a full cycle when ωt advances by $2 \pi . \quad \omega=2 \pi f$

$$
\omega=2 \pi f
$$

In this example:
$\phi_{V}=+\pi / 6$ or 30°
Root-Mean-Square:

$$
\begin{aligned}
& V_{r m s}=\frac{V_{P}}{\sqrt{2}} \\
& I_{r m s}=\frac{I_{P}}{\sqrt{2}}
\end{aligned}
$$

